Cyanidioschyzon merolae Genome Project

Home / Introduction / Browser / BLAST / Publications / Download / Member

Phylogeny

Cyanobacterial genes transmitted to the nucleus before divergence of red algae in the chromista.
Nozaki H, Matsuzaki M, Misumi O, Kuroiwa H, Hasegawa M, Higashiyama T, Shin-i T, Kohara Y, Ogasawara N, Kuroiwa T.
The plastids of red algae, green plants, and glaucophytes may have originated directly from a cyanobacterium-like prokaryote via primary endosymbiosis. In contrast, the plastids of other lineages of eukaryotic phototrophs appear to be the result of secondary or tertiary endosymbiotic events involving a phototrophic eukaryote and a eukaryotic host cell. Although phylogenetic analyses of multiple plastid genes from a wide range of eukaryotic lineages have been carried out, the phylogenetic positions of the secondary plastids of the Chromista (Heterokontophyta, Haptophyta and Cryptophyta) are ambiguous in a range of different analyses. This ambiguity may be the result of unusual substitutions or bias in the plastid genes established by the secondary endosymbiosis. In this study, we carried out phylogenetic analyses of five nuclear genes of cyanobacterial origin (6-phosphogluconate dehydrogenase [gnd], oxygen-evolving-enhancer [psbO], phosphoglycerate kinase [pgk], delta-aminolevulinic acid dehydratase [aladh], and ATP synthase gamma [atpC] genes), using the genome sequence data from the primitive red alga Cyanidioschyzon merolae 10D. The sequence data robustly resolved the origin of the cyanobacterial genes in the nuclei of the Chromista (Heterokontophyta and Haptophyta) and Dinophyta, before the divergence of the extant red algae (including Porphyra [Rhodophyceae] and Cyanidioschyzon [Cyadidiophyceae]). Although it is likely that gnd genes in the Chromista were transmitted from the cyanobacterium-like ancestor of plastids in the primary endosymbiosis, other genes might have been transferred from nuclei of a red algal ancestor in the secondary endosymbiosis. Therefore, the results indicate that the Chromista might have originated from the ancient secondary endosymblosis before the divergence of extant red algae.

Phylogeny of plastids based on cladistic analysis of gene loss inferred from complete plastid genome sequences.
Nozaki H, Ohta N, Matsuzaki M, Misumi O, Kuroiwa T.
Based on the recent hypothesis on the origin of eukaryotic phototrophs, red algae, green plants, and glaucophytes constitute the "primary photosynthetic eukaryotes" (whose plastids may have originated directly from a cyanobacterium-like prokaryote via primary endosymbiosis), whereas the plastids of other lineages of eukaryotic phototrophs appear to be the result of secondary or tertiary endosymbiotic events (involving a phototrophic eukaryote and a host cell). Although phylogenetic analyses using multiple plastid genes from a wide range of eukaryotic lineages have been carried out, some of the major phylogenetic relationships of plastids remain ambiguous or conflict between different phylogenetic methods used for nucleotide or amino acid substitutions. Therefore, an alternative methodology to infer the plastid phylogeny is needed. Here, we carried out a cladistic analysis of the "loss of plastid genes" after primary endosymbiosis using complete plastid genome sequences from a wide range of eukaryotic phototrophs. Since it is extremely unlikely that plastid genes are regained during plastid evolution, we used the irreversible Camin-Sokal model for our cladistic analysis of the loss of plastid genes. The cladistic analysis of the 274 plastid protein-coding genes resolved the 20 operational taxonomic units representing a wide range of eukaryotic lineages (including three secondary plastid-containing groups) into two large monophyletic groups with high bootstrap values: one corresponded to the red lineage and the other consisted of a large clade composed of the green lineage (green plants and Euglena) and the basal glaucophyte plastid. Although the sister relationship between the green lineage and the Glaucophyta was not resolved in recent phylogenetic studies using amino acid substitutions from multiple plastid genes, it is consistent with the rbcL gene phylogeny and with a recent phylogenetic study using multiple nuclear genes. In addition, our analysis robustly resolved the conflicting/ambiguous phylogenetic positions of secondary plastids in previous phylogenetic studies: the Euglena plastid was sister to the chlorophycean (Chlamydomonas) lineage, and the secondary plastids from the diatom (Odontiella) and cryptophyte (Guillardia) were monophyletic within the red lineage.

The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids.
Nozaki H, Matsuzaki M, Takahara M, Misumi O, Kuroiwa H, Hasegawa M, Shin-i T, Kohara Y, Ogasawara N, Kuroiwa T.
Red algae are one of the main photosynthetic eukaryotic lineages and are characterized by primitive features, such as a lack of flagella and the presence of phycobiliproteins in the chloroplast. Recent molecular phylogenetic studies using nuclear gene sequences suggest two conflicting hypotheses (monophyly versus non-monophyly) regarding the relationships between red algae and green plants. Although kingdom-level phylogenetic analyses using multiple nuclear genes from a wide-range of eukaryotic lineages were very recently carried out, they used highly divergent gene sequences of the cryptomonad nucleomorph (as the red algal taxon) or incomplete red algal gene sequences. In addition, previous eukaryotic phylogenies based on nuclear genes generally included very distant archaebacterial sequences (designated as the outgroup) and/or amitochondrial organisms, which may carry unusual gene substitutions due to parasitism or the absence of mitochondria. Here, we carried out phylogenetic analyses of various lineages of mitochondria-containing eukaryotic organisms using nuclear multigene sequences, including the complete sequences from the primitive red alga Cyanidioschyzon merolae. Amino acid sequence data for two concatenated paralogous genes (alpha- and beta-tubulin) from mitochondria-containing organisms robustly resolved the basal position of the cellular slime molds, which were designated as the outgroup in our phylogenetic analyses. Phylogenetic analyses of 53 operational taxonomic units (OTUs) based on a 1525-amino-acid sequence of four concatenated nuclear genes (actin, elongation factor-1alpha, alpha-tubulin, and beta-tubulin) reliably resolved the phylogeny only in the maximum parsimonious (MP) analysis, which indicated the presence of two large robust monophyletic groups (Groups A and B) and the basal eukaryotic lineages (red algae, true slime molds, and amoebae). Group A corresponded to the Opisthokonta (Metazoa and Fungi), whereas Group B included various primary and secondary plastid-containing lineages (green plants, glaucophytes, euglenoids, heterokonts, and apicomplexans), Ciliophora, Kinetoplastida, and Heterolobosea. The red algae represented the sister lineage to Group B. Using 34 OTUs for which essentially the entire amino acid sequences of the four genes are known, MP, distance, quartet puzzling, and two types of maximum likelihood (ML) calculations all robustly resolved the monophyly of Group B, as well as the basal position of red algae within eukaryotic organisms. In addition, phylogenetic analyses of a concatenated 4639-amino-acid sequence for 12 nuclear genes (excluding the EF-2 gene) of 12 mitochondria-containing OTUs (including C. merolae) resolved a robust non-sister relationship between green plants and red algae within a robust monophyletic group composed of red algae and the eukaryotic organisms belonging to Group B. A new scenario for the origin and evolution of plastids is suggested, based on the basal phylogenetic position of the red algae within the large clade (Group B plus red algae). The primary plastid endosymbiosis likely occurred once in the common ancestor of this large clade, and the primary plastids were subsequently lost in the ancestor(s) of the Discicristata (euglenoids, Kinetoplastida, and Heterolobosea), Heterokontophyta, and Alveolata (apicomplexans and Ciliophora). In addition, a new concept of "Plantae" is proposed for phototrophic and nonphototrophic organisms belonging to Group B and red algae, on the basis of the common history of the primary plastid endosymbiosis. The Plantae include primary plastid-containing phototrophs and nonphototrophic eukaryotes that possibly contain genes of cyanobacterial origin acquired in the primary endosymbiosis.